CET Cancer Center, High Dose Rate (hdr) Brachytherapy Specialist with 25 years of experience
Contact Us
As of January 4, 2010 Dr. Demanes and the program have relocated to UCLA.

HDR Brachytherapy for Esophageal and Bile Duct Cancer


1. Introduction

Fig 1: AP Picture showing stent on an x-ray film.
The esophagus and gall bladder are part of the gastrointestinal system. The treatment of these cancers is similar in that they are both treated using "intralumenal" catheters. ( A lumen is the hollow space in the center of a tube). The patient is treated on an outpatient basis. Both treatment courses require 3 to 4 treatments.

With biliary intralumenal treatments, the patient comes to our clinic with a stent that has been placed in the bile duct by the surgeon. This stent, visible on x-ray, keeps the duct open, allowing the HDR treatment catheter to be positioned accurately. Once the localization x-ray films are taken and the computerized treatment plan completed, the initial treatment is given. Each of the successive treatments is preceded by x-ray films to ensure that the treatment catheter is in the same position as the first treatment.

2. HDR Procedure

Esophageal HDR treatments involve inserting a 1cm to 1.3cm diameter tube into the esophagus which most patients can do without much difficulty. Referring to CT and diagnostic radiographs, the physician indicates on the localization x-ray films where the tumor is, the treatment length and treatment radius. After the position of the treatment catheter has been approved by the physician, the computerized treatment plan is quickly done as there is only one catheter involved in esophageal treatments. The time required for the source to deliver the prescribed dose is between 5 and 10 minutes. Using HDR brachytherapy for these types of cancers ensures a very high radiation dose directed at the tumor. Because the radiation is delivered internally, a much smaller volume of normal tissue is irradiated.

Printable Material

Back to TopGeneral Frequently Asked Questions

1. What is Brachytherapy?

The prefix "brachy" is the Greek word for "short" distance. Brachytherapy is a form of internal radiation treatment where radioactive sources are placed on or into cancer tissues. There are two kinds of brachytherapy. The radiation sources may be inserted either permanently or temporarily. The two most common forms of treatment are low dose rate (LDR) permanent seeds for prostate cancer and high dose rate (HDR) temporary brachytherapy, that can be used for prostate, gynecologic, breast, head and neck, lung, esophageal, bile duct, anorectal, sarcoma, and other cancers.

2. What is high dose rate (HDR) Brachytherapy?

High dose rate (HDR) is a technically advanced form of brachytherapy. A high intensity radiation source is delivered with millimeter precision under computer guidance directly into the tumor killing it from the inside out while avoiding injury to surrounding normal healthy tissue. For a more in depth explanation please visit the understanding HDR Brachytherapy page.

3. How does radiation kill cancer?

Cancer is made of abnormal cells that tend to grow without control. Cancer DNA is more sensitive to radiation than are normal cells, so radiation kills cancer directly or when the cells attempt to multiply while normal tissue in the region is able to repair and recover.

4. What are the advantages of HDR Brachytherapy?

  • Short course of treatment compared to other types of radiation treatment (1 week)
  • Preservation of organ structure and function
  • Fewer side effects
  • Excellent coverage of possible microscopic extension of cancer
  • Knowledge of radiation dose distribution before treatment is given
  • Accuracy and precision of tumor specific radiation dose delivery
  • Minimizes areas of radiation overdose (hot spots) or underdose (cold spots)
  • Organ motion (target movement) is not a problem for HDR as it is with external beam
Prostate Specific
Breast Specific
  • Conserves the breast and yields excellent cosmetic results
  • Reduces radiation dose to the heart, lungs, and opposite breast
  • Doesn't cause a delay in other treatments such as chemotherapy

For more information on the advantages for specific cancer sites please click on the appropriate link below:
Prostate cancer | Breast Cancer | Gynecologic Cancer | Head & Neck Cancer
Esophageal and Bile Duct Cancer | Lung Cancer | Soft Tissue Sarcoma Cancer

5. How successful is HDR Brachytherapy?

HDR Brachytherapy is effective treatment of local disease in many forms of cancer including prostate, gynecological, breast, head and neck, esophagus, lung, anorectal, bile duct, sarcoma, and other primary cancer or localized metastasis as reported in medical literature. CET's publication on prostate cancer, for example has demonstrated 90% 10-year tumor control. Success rates for other tumors vary according to the type and stage of cancer being treated.

6. How many treatments has CET administered?

As of 12/31/2009, CET has performed 10,267 HDR implants and delivered 21,878 HDR treatments. Please see our treatment statistics for further details.

7. Why is HDR less well known than other forms of cancer treatment?

HDR Brachytherapy is a relatively new form of advance radiation technology. Fewer physicians have been trained to perform HDR procedures compared to seed implants or external beam radiation. Few centers, other than CET have been dedicated to the development of HDR brachytherapy to its full potential. Dr. Demanes has devoted his career to the advancement of brachytherapy and has pioneered the use of HDR and established CET as a center of excellence with specially trained and experienced staff and physicians.

8. Why should I select CET?

Please see CET Advantage for more information.

Back to TopAbout Us

Membership and affiliations
American Society for Therapeutic Radiology And Oncology
Chair - Health Policy and Economics Practice Management Subcommittee,
Chair - Regulatory Subcommittee, Member - Health Policy and Economic Committee,
Member - Health Policy and Economics Code Development and Valuation Subcommittee,
Member - Code Utilization and Application Subcommittee.
American Brachytherapy Society
- Socioeconomic Committee.
American College of Radiation Oncology
President - 2005 to 2007
American College of Radiology
Fellow - 2007